

Single-task supervised models are AMAZING, but...

- Require large O(100,000 events) labeled datasets
 ⇒ heavy reliance on well-calibrated simulations.
- It can take a very long time to match reconstruction performance between simulation and real detector data.

Single-task supervised models are AMAZING, but...

 They are domain experts. They only extract from data what they exactly need for their task.

Attention maps from image classification in a vision transformer DINO (2104.14294)

(Vision) foundation models are generalists

FM = learn more than the task requires so you can reuse it later

Attention maps from image classification and self-supervised tasks in a vision transformer DINO (2104.14294)

(Vision) foundation models are generalists

Point Correspondence [2]

DINO (SSL) [2]

Input Views 3D Gaussians Novel Views

Multi-view Reconstruction [3]

Video Tracking [4]

(Vision) foundation models are generalists

Monocular depth estimation [1]

"Pre-train → fine-tune" paradigm

Point Correspondence [2]

DINO (SSL) [<u>2</u>]

Multi-view Reconstruction [3]

Video Tracking [4]

Ok... so how do you create one?

HTCAFM (how to create a foundation model)

- Make like things alike, unalike things unalike.
- Create a hard task that forces the model to understand the dataset you are giving to it.
 - The task should ideally sit on the phase transition of learning vs total collapse.

Simple Example: only give the model some of data, and ask it to tell you what is missing.

The full data becomes your "truth" label → no actual labels needed!

HTCAFM (how to create a foundation model)

- Note that in this scenario, the sentence and image are split into chunks, or tokens.
- An underlying assumption of these types of models, called masked autoencoders
 [1], is that the underlying data contains nuggets of information that contextually relate to one another.
 - E.g., words make grammatically correct sentences, quarters of a 2D cookie make a full 2D cookie. Different components of a par

Masked Autoencoders Across Modalities

	BERT (<u>1810.04805</u>)	MAE (<u>2111.06377</u>)	Point-MAE (2203.06604)	Masked Point Modeling (2401.13537)	PoLAr-MAE (<u>2502.02558</u>)	
Original	The tree turns green				X	Decoder
Masked	The tree green					Encoder
	Language	Image	Point cloud	Set of reconstructed particles ("jet")	3D LArTPC Image	Autoencoder

Point-based LAr Masked Autoencoder (PoLAr-MAE) [1]

Technical notes:

- We must find a way to patchify points?
- Encoder-decoder is **asymmetric**, i.e. encoder params ≫ decoder params.
- Masked tokens are not fed into encoder.

3D charge deposited

3D charge deposited

→ Treat each point as sphere

3D charge deposited

- → Treat each point as sphere
- → Remove overlapping spheres

3D charge deposited

- → Treat each point as sphere
- → Remove overlapping spheres
- → Ball query to get patches

Point-based LAr Masked Autoencoder (PoLAr-MAE) [1]

Point-based LAr Masked Autoencoder (PoLAr-MAE) [1]

Ok... how do you encode a variable number of points into a single feature vector?

N points in (X,Y)

N points in (X,Y)

k points in local coordinates (u,v)

Apply pointnet at a local region

k points in local coordinates (u,v)

high-dim feature spaceAdapted from Leo Guibas' <u>slides</u> in Stanford CS468

Point-based LAr Masked Autoencoder (PoLAr-MAE) [1]

Patch Representations

A look at patch representations.

Remember: one patch contains a group of pixels, so can contain >1 particle type.

Patch Representations

A look at patch representations.

Remember: one patch contains a group of pixels, so can contain >1 particle type.

A Hint at Emergence: Attention Scores

Attention(Q, K, V) = softmax(

Instance and Vertex Classification

Instance Sharing

Vertex Sharing

Comparison to State of the Art (UResNet): Semantic Segmentation

What we care about: per-pixel classification

 Beats state-of-the-art in data-constrained environment, but not in the limit of many events.

does not beat UResNet at high event counts.

→ fundamental limit in PoLAr-MAE architecture.

Comparison to State of the Art (UResNet): Semantic Segmentation

- Small features poorly modeled, i.e. "paint brush" classification.
- This is due to single-scale patches being used, which smears tiny structures.

Ok... how can we do better?

Next step: Hierarchical models

New architecture: Point Transformer [1] – hierarchical features with efficient transformer implementation.

Many fancy tricks to keep efficient and scalable... but will not go over.

Native per-point features are possible → fine-grained understanding

Next step: Hierarchical models

New architecture: Point Transformer [1] – hierarchical features with efficient transformer implementation.

Many fancy tricks to keep efficient and scalable... but will not go over.

Native per-point features are possible → fine-grained understanding

Single-scale

Multi-scale

Next step: Hierarchical models + self-distillation = SONATA [1]

In the computer vision world, self-**di**stillation with **no** labels (**DINO**) [$\underline{2}$] is changing the way research is being done.

If you use natural images, your feature extractor should probably be DINO.

Self-distillation [2,3] consists of forcing a model to agree across different augmented (jitter, crop, rotate) views of the same image.

So how do we do?

First look at results: [100, 10⁶] events

■ DINO-like SSL, PEFT

Takeaways

- Hopefully we understand a bit more about how self-supervised training works, and how you might attempt a foundation model for LArTPC images. But there are many other ways! (See this slide in Kazu's talk)
- A generic feature extractor unlocks new possibilities that were simply not possible before:
 - **Few-shot learning w/o well-calibrated sim**: track/shower, Michel tagging, particle ID, ...
 - Reasoning over images/captioning with language (human-in-the-loop)
 - Content-retrieval at scale: "find events like this" in this dataset.
 - Cross-experiment datasets → invariant embeddings across detector conditions, easy adaptation.
 - Anomaly detection: flag data as detector conditions degrade.
 - Faster prototyping, quicker progress.

Extras

Semantic Segmentation Example

1M dataset, PoLAr-MAE FFT

Perf

