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Single-task supervised models are AMAZING, but...

Require large O(100,000 events) labeled datasets
= heavy reliance on well-calibrated simulations.
It can take a very long time to match reconstruction performance

between simulation and real detector data.

N
Training data

I Production data

“sim2real” gap

Density

Feature



Single-task supervised models are AMAZING, but...

e They are domain experts. They only extract from data what they
exactly need for their task.

Attention maps Attention maps from image
Vision Transformer (ViT)

classification in a vision
Class = transformer
Ball /
Bl =] Head DINO (2104.14294)
| Transformer Encoder l
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https://arxiv.org/abs/2104.14294

(Vision) foundation models are generalists

FM = learn more than the task requires so you can reuse it later

Supervised Self-supervised

vl ......
|
&

Attention maps from image
classification and
self-supervised tasks in a
vision transformer

DINO (2104.14294)



https://arxiv.org/abs/2104.14294

(Vision) foundation models are generalists

Input Image DINOv2 Baseline: a =1.0

P
K oia

N / Multi-view
Reconstruction [3]
Monocular depth estimation

[

- =R

Point Correspondence [2] DINO (SSL) [

Video Tracking [4] 5
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(Vision) foundation models are generalists

Input Image DINOv2 Baseline: a =1.0

--- / MU|tI VieW
. Reconstruction [3]

Monocular depth estimation
] “Pre-train =» fine-tune”

paradigm
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Video Tracking [4] e
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Ok... so how do you create one?



HTCAFM (how to create a foundation model)

e Make like things alike, unalike things unalike.
e Create a hard task that forces the model to understand the dataset you are giving to it.
o The task should ideally sit on the phase transition of learning vs total collapse.

Simple Example: only give the model some of data, and ask it to tell you what is missing.
e The full data becomes your “truth” label » no actual labels needed!

Sarah had a terrible

_—

headache exaggerate

v ) 4




HTCAFM (how to create a foundation model)

e Note that in this scenario, the sentence and image are split into chunks, or tokens.
e An underlying assumption of these types of models, called masked autoencoders
[1], is that the underlying data contains nuggets of information that contextually

relate to one another.
o E.g., words make grammatically correct sentences, quarters of a 2D cookie make a
full 2D cookie. Different components of a par

Sarah had a terrible

_—

headache exaggerate

v ) 4



https://arxiv.org/abs/2111.06377

Masked Autoencoders Across Modalities

BERT MAE Point-MAE Masked Point Modeling
(1810.04805) (2111.06377) (2203.06604) (240113537)
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https://arxiv.org/abs/2203.06604
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Point-based LAr Masked Autoencoder (PoLAr-MAE) [1]

' . Latent .
Input 3D image Masked image Iear'er’\:; rr?ar:l‘:gzk:ns Reconstructed 3D image
8
y @ e o
Patch !7 ) -
and fn Encoder o Decoder
Mask P ”
e @ -
Ll op

Technical notes:
e We must find a way to patchify points?
e Encoder-decoder is asymmetric, i.e. encoder params > decoder params.
e Masked tokens are not fed into encoder.

"


https://arxiv.org/abs/2502.02558

Patchification

3D charge deposited



Patchification

3D charge deposited

=+ Treat each point as sphere
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Patchification

3D charge deposited

" = Treat each point as sphere
” ® -+ Remove overlapping spheres
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Patchification

3D charge deposited

= Treat each point as sphere

P - =+ Remove overlapping spheres
i -4 = Ball query to get patches
k \) ) - sdq.i.l
J TN
Yy o .
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Point-based LAr Masked Autoencoder (PoLAr-MAE) [1]

) . Latent groups + Reconstructed 3D image
Input 3D image Masked image learned mask tokens =

s\
e o
Patch l )
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as a sphere overlapping spheres individual spheres
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https://arxiv.org/abs/2502.02558

Point-based LAr Masked Autoencoder (PoLAr-MAE) [1]

Patch Encoder Large Encoder (Transformer) Tiny Mask Decoder (Transformer) Reconstruction Heads

Input 3D image M)

mini-PointNet

L ON N

Ok... how do you encode a variable number of points into a single feature vector?

17
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Point feature learning
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https://geometry.cs.ucl.ac.uk/workshops/creativeai/slides/part5_pointcloudLearning_guibas.pdf

Point feature learning
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https://geometry.cs.ucl.ac.uk/workshops/creativeai/slides/part5_pointcloudLearning_guibas.pdf

Point feature learning
Y

£ Apply pointnet at a local region
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Adapted from Leo Guibas’ slides in Stanford CS468



https://geometry.cs.ucl.ac.uk/workshops/creativeai/slides/part5_pointcloudLearning_guibas.pdf

Point feature learning
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Point feature learning
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https://geometry.cs.ucl.ac.uk/workshops/creativeai/slides/part5_pointcloudLearning_guibas.pdf

Point feature learning
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https://geometry.cs.ucl.ac.uk/workshops/creativeai/slides/part5_pointcloudLearning_guibas.pdf

Point-based LAr Masked Autoencoder (PoLAr-MAE) [1

Input 3D image
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https://arxiv.org/abs/2502.02558

Shower

Patch Representations

Delta Michel

Track

A look at patch representations.

Remember: one patch contains a group
of pixels, so can contain >1 particle type.

25



Shower

Patch Representations

Delta Michel

Track

A look at patch representations.

Remember: one patch contains a group
of pixels, so can contain >1 particle type.

Patch makeup semantic segmentation

[ Precision B Recall A

0y - v v X X 1,60
’ ‘/ ® ® 0 o 0'80 oG 0.998 0.995 0.996 ; 991 9 0:973 0.986 0.980
o~ \ J | fi 1
, o
(O < %060

© .... ..o: ° E
gttt WS ~ 3 0.40

L
0.201

0.00-

"

Shower Track Michel Delta Average 26



A Hint at Emergence: Attention Scores
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Interactive visualization here 27


https://youngsm.com/projects/attn-viz

Instance and Vertex Classification

Instance Sharing
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Comparison to State of the Art (UResNet): Semantic Segmentation

What we care about: per-pixel classification
e Beats state-of-the-art in data-constrained environment, but not in the limit of
many events.

Macro F; Score

I does not beat UResNet at
high event counts.

= fundamental limit in
PoLAr-MAE architecture.

o
~

Macro F, Score

=&~ PEFT
—o— UResNet

S R R RS e
Num. Events (Pretrain + Fine-tune)
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Comparison to State of the Art (UResNet): Semantic Segmentation

e Small features poorly modeled, i.e. “paint brush” o

classification.
e This is due to single-scale patches being used,

which smears tiny structures.

Michel Delta Low Energy Deposit

“Small” 1 AtTA /»/‘
0.6 1 0.6 '/:___;_ ———8-——--9 - 0.90

2 g o
classes 3 5 S o5
V04 ¥ 0.4 v
e —e— FFT u —e— FFT o 0.80 - FFT
0.2 -e- PEFT 0.2 -e- PEFT . PEFT
—e— UResNet —e— UResNet ’ —e— UResNet

- - ] 24
/ 102 103 104 10° 10° 102 103 104 10° 106 102 103 104 10° 10°

Num. Events (Pretrain + Fine-tune) Num. Events (Pretrain + Fine-tune) Num. Events (Pretrain + Fine-tune)
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Ok... how can we do better?

31



Next step: Hierarchical models

New architecture: Point Transformer [1] — hierarchical features with efficient
transformer implementation.
e Many fancy tricks to keep efficient and scalable... but will not go over.

Native per-point features are possible » fine-grained understanding

Encoder PCAs

32


https://openaccess.thecvf.com/content/CVPR2025/papers/Wu_Sonata_Self-Supervised_Learning_of_Reliable_Point_Representations_CVPR_2025_paper.pdf
https://arxiv.org/abs/2312.10035

Next step: Hierarchical models

New architecture: Point Transformer [1] — hierarchical features with efficient
transformer implementation.

e Many fancy tricks to keep efficient and scalable... but will not go over.

Native per-point features are possible » fine-grained understanding

. e L) ©
" LY

R ~. e

N .

. :

Single-scale

Multi-scale
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https://arxiv.org/abs/2312.10035

Next step: Hierarchical models + self-distillation = SONATA [1]

In the computer vision world, self-distillation with no labels (DINO) [2] is
changing the way research is being done.

If you use natural images, your feature extractor should probably be DINO.

—) S
So how do we do? Vo T

Self-distillation [2,3] consists of forcing a model to agree t~T %
across different augmented (jitter, crop, rotate) views of
the same image. o
shared :
X weights :
7
34

I~


https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2006.07733
https://openaccess.thecvf.com/content/CVPR2025/papers/Wu_Sonata_Self-Supervised_Learning_of_Reliable_Point_Representations_CVPR_2025_paper.pdf
https://link.springer.com/chapter/10.1007/978-3-030-97610-1_29

First look at results: [100, 10°] events
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Takeaways

Hopefully we understand a bit more about how self-supervised training works, and
how you might attempt a foundation model for LArTPC images. But there are many
other ways! (See this slide in Kazu’s talk)

A generic feature extractor unlocks new possibilities that were simply not possible
before:

O

Few-shot learning w/o well-calibrated sim: track/shower, Michel tagging,
particle ID, ...

Reasoning over images/captioning with language (human-in-the-loop)
Content-retrieval at scale: “find events like this” in this dataset.
Cross-experiment datasets = invariant embeddings across detector
conditions, easy adaptation.

Anomaly detection: flag data as detector conditions degrade.

Faster prototyping, quicker progress.

The future is exciting! 36
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Extras
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Semantic Segmentation Example

1M dataset, PoOLAr-MAE FFT
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